Non-asymptotic error controlled sparse high dimensional precision matrix estimation
نویسندگان
چکیده
Estimation of a high dimensional precision matrix is critical problem to many areas statistics including Gaussian graphical models and inference on data. Working under the structural assumption sparsity, we propose novel methodology for estimating such matrices while controlling false positive rate, percentage entries incorrectly chosen be non-zero. We specifically focus rates tending towards zero with finite sample guarantees. In context large scale hypothesis testing, control discovery rate also considered. This distribution free, but particularly applicable network recovery. consider applications constructing gene networks in genomics
منابع مشابه
Bayesian estimation of a sparse precision matrix
We consider the problem of estimating a sparse precision matrix of a multivariate Gaussian distribution, including the case where the dimension p is large. Gaussian graphical models provide an important tool in describing conditional independence through presence or absence of the edges in the underlying graph. A popular non-Bayesian method of estimating a graphical structure is given by the gr...
متن کاملSparse Precision Matrix Estimation with Calibration
We propose a semiparametric method for estimating sparse precision matrix of high dimensional elliptical distribution. The proposed method calibrates regularizations when estimating each column of the precision matrix. Thus it not only is asymptotically tuning free, but also achieves an improved finite sample performance. Theoretically, we prove that the proposed method achieves the parametric ...
متن کاملHigh-dimensional bolstered error estimation
MOTIVATION In small-sample settings, bolstered error estimation has been shown to perform better than cross-validation and competitively with bootstrap with regard to various criteria. The key issue for bolstering performance is the variance setting for the bolstering kernel. Heretofore, this variance has been determined in a non-parametric manner from the data. Although bolstering based on thi...
متن کاملSparse Precision Matrix Estimation via Lasso Penalized D-Trace Loss
We introduce a constrained empirical loss minimization framework for estimating highdimensional sparse precision matrices and propose a new loss function, called the D-trace loss, for that purpose. A novel sparse precision matrix estimator is defined as the minimizer of the lasso penalized D-trace loss under a positive-definiteness constraint. Under a new irrepresentability condition, the lasso...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Multivariate Analysis
سال: 2021
ISSN: ['0047-259X', '1095-7243']
DOI: https://doi.org/10.1016/j.jmva.2020.104690